Problem 11376

Given a real number a and a positive integer n, let

$$
S_{n}(a)=\sum_{a n<k \leq(a+1) n} \frac{1}{\sqrt{k n-a n^{2}}}
$$

For which a does the sequence $\left\langle S_{n}(a)\right\rangle$ converge?

Solution.

The sequence converges for any real value of a. In fact, as n grows, the partial sum $S_{n}(a)$ converges to 2 , as it will be explained.

The index bounds of the sum $S_{n}(a)$ are the real numbers $a n$ and $(a+1) n$. If we conveniently choose an amount ε, such that $0<\varepsilon \leq 1$ and that $a n+\varepsilon$ is the smallest integer larger than $a n$, then the following numbers are integers as well:

$$
\begin{gathered}
a n+\varepsilon+1 \\
a n+\varepsilon+2 \\
\vdots \\
a n+\varepsilon+n-1
\end{gathered}
$$

By construction, we also have that the greatest integer smaller than $(a+1) n$ is $(a+1) n+\varepsilon-1$.
With this consideration, we can write the partial sum with integer index bounds:

$$
\begin{aligned}
S_{n}(a)=\sum_{a n<k \leq(a+1) n} \frac{1}{\sqrt{k n-a n^{2}}} & =\sum_{k=a n+\varepsilon}^{a n+\varepsilon+n-1} \frac{1}{\sqrt{k n-a n^{2}}} \\
& =\sum_{k=0}^{n-1} \frac{1}{\sqrt{(k+a n+\varepsilon) n-a n^{2}}} \\
& =\sum_{k=0}^{n-1} \frac{1}{\sqrt{(k+\varepsilon) n}} \\
& =\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \frac{1}{\sqrt{k+\varepsilon}}
\end{aligned}
$$

Hence the sequence $\left\langle S_{n}(a)\right\rangle$ converges if and only if the following limit exists:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \frac{1}{\sqrt{k+\varepsilon}}=L \tag{1}
\end{equation*}
$$

We consider the following theorem:
Theorem: Let $f(x)$ be a decreasing continuous function in the closed interval $[a-1, b+1]$, with a and b integers. Left and right Riemann sums yield:

$$
\int_{a}^{b+1} f(x) d x \leq \sum_{k=a}^{b} f(k) \leq \int_{a}^{b+1} f(x-1) d x
$$

This is not immediatly applicable to the partial sum $S_{n}(a)$, for the inner function has one singularity at $x=-\varepsilon$. Since the inferior limit of the sum is 0 , the hypotesis is not satisfied, so the right inequality cannot be stated. We fix this by splitting the sum:

$$
\begin{aligned}
\int_{0}^{n} \frac{1}{\sqrt{x+\varepsilon}} d x & \leq \sum_{k=0}^{n-1} \frac{1}{\sqrt{k+\varepsilon}} \\
& =\frac{1}{\sqrt{\varepsilon}}+\sum_{k=1}^{n-1} \frac{1}{\sqrt{k+\varepsilon}} \leq \frac{1}{\sqrt{\varepsilon}}+\int_{1}^{n} \frac{1}{\sqrt{x-1+\varepsilon}} d x
\end{aligned}
$$

Therefore L is nested by:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\int_{0}^{n} \frac{1}{\sqrt{x+\varepsilon}} d x\right) \leq L \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{\varepsilon}}+\int_{1}^{n} \frac{1}{\sqrt{x-1+\varepsilon}} d x\right) \\
\left.\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}(2 \sqrt{x+\varepsilon})\right|_{0} ^{n} \leq L \leq \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{\varepsilon}}+\left.\frac{1}{\sqrt{n}}(2 \sqrt{x-1+\varepsilon})\right|_{1} ^{n}
\end{gathered}
$$

Considering that $0<\varepsilon \leq 1$:

$$
2 \leq L \leq 2
$$

Which yields as only possibility:

$$
L=\lim _{n \rightarrow \infty} S_{n}(a)=2
$$

Note that the subradical quantity in each term is positive, since $k n>(a n) n=a n^{2}$. This proves that the sequence converges to 2 , for any real value of " a ".

We provide a generalization of the problem. For a real number p, let

$$
S_{n}(a)=\sum_{a n<k \leq(a+1) n} \frac{1}{\left(k n-a n^{2}\right)^{p}}
$$

With the same procedure given before, the sequence $\left\langle S_{n}(a)\right\rangle$ converges to

$$
L=\lim _{n \rightarrow \infty} \frac{1}{n^{p}}\left(\int_{0}^{n} \frac{d x}{(x+\varepsilon)^{p}}\right)
$$

- $L=\infty$ if $p<1 / 2$.
- $L=2$ if $p=1 / 2$.
- $L=0$ if $p>1 / 2$.

Of course, the last interval includes the value $p=1$, for which, by L'Hopital's rule:

$$
L=\lim _{n \rightarrow \infty} \frac{\ln (n+\varepsilon)-\ln (\varepsilon)}{n^{p}}=0
$$

