
A walk through Determinants and Recurrence Relations

11396. Proposed by Gérard Letac, Université Paul Sabatier, Toulouse, France. For complex z, let
Hn(z) denote the n × n Hermitian matrix whose diagonal elements all equal 1 and whose above-
diagonal elements all equal z. For n ≥ 2, find all z such that Hn(z) is positive semi-definite.

Solution by Francisco Vial (student), Pontificia Universidad de Chile, Santiago de Chile. We will
use Dodgson’s rule for determinants to find an explicit formula for det(Hn(z)):

det
[
(ai,j) 1≤i≤n

1≤j≤n

]
· det

[
(ai,j) 2≤i≤n−1

2≤j≤n−1

]
=

det
[
(ai,j) 1≤i≤n−1

1≤j≤n−1

]
· det

[
(ai,j) 2≤i≤n

2≤j≤n

]
− det

[
(ai,j) 1≤i≤n−1

2≤j≤n

]
· det

[
(ai,j) 2≤i≤n

1≤j≤n−1

]
.

Here, det(M) ≡ |M | if M is any n× n matrix. Hn(z) is defined as

Hn(z) =


1 z z . . . z
z∗ 1 z . . . z
z∗ z∗ 1 . . . z
...

...
... . . .

...
z∗ z∗ z∗ . . . 1


n×n

and it is easy to see that
det
[
(hi,j) 2≤i≤n−1

2≤j≤n−1

]
= |Hn−2| ,

det
[
(hi,j) 1≤i≤n−1

1≤j≤n−1

]
= |Hn−1| ,

det
[
(hi,j) 2≤i≤n

2≤j≤n

]
= |Hn−1| .

Hence, by Dodgson’s rule,

|Hn| · |Hn−2| = |Hn−1|2 − |An−1| |Bn−1| , (1)

where

An(z) =


z z z . . . z
1 z z . . . z
z∗ 1 z . . . z
...

...
... . . .

...
z∗ z∗ z∗ . . . z


n×n

, Bn(z) =


z∗ 1 z . . . z
z∗ z∗ 1 . . . z
z∗ z∗ z∗ . . . z
...

...
... . . .

...
z∗ z∗ z∗ . . . z∗


n×n

.

We can compute |An(z)|, |Bn(z)| in terms of |Hn(z)| and |Hn−1(z)| as follows:

det(An) =

∣∣∣∣∣∣∣∣∣∣∣

z z z . . . z
1 z z . . . z
z∗ 1 z . . . z
...

...
... . . .

...
z∗ z∗ z∗ . . . z

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣

1 z z . . . z
z∗ 1 z . . . z
z∗ z∗ 1 . . . z
...

...
...

z z z . . . z

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

( z
z∗

)
∣∣∣∣∣∣∣∣∣∣∣

1 z z . . . z
z∗ 1 z . . . z
z∗ z∗ 1 . . . z
...

...
...

z∗ z∗ z∗ . . . z∗

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

( z
z∗

)
((z∗ − 1) |Hn−1|+ |Hn|) .

(Note that (n− 1) rows have been permuted, then the last row has been multiplied by z∗

z and finally
the determinant has been computed using Laplace expansion on the last column).



In a similar fashion we have

det(Bn) = (−1)n−1

(
z∗

z

)
((z − 1) |Hn−1|+ |Hn|) .

Replacing in (1) we obtain

|Hn| · |Hn−2| = |Hn−1|2 − ((z∗ − 1) |Hn−2|+ |Hn−1|) ((z − 1) |Hn−2|+ |Hn−1|)
= (2− z − z∗) |Hn−1| |Hn−2| − (z − 1)(z∗ − 1) |Hn−2|2 .

We now have a linear recurrence relation for |Hn|:

|Hn| = (2− z − z∗) |Hn−1| − (z − 1)(z∗ − 1) |Hn−2| .

It is easy to see that the roots of the characteristic equation

r2 − (2− z − z∗)r + (z − 1)(z∗ − 1) = 0

are

r1 = 1− z ,
r2 = 1− z∗ .

Hence,  |Hn| = αrn1 + βrn2
|H1| = 1
|H2| = 1− zz∗.

Solving for α, β yields

|Hn| =
z∗

z∗ − z
(1− z)n +

z

z − z∗
(1− z∗)n

|Hn| = 2<
(

z

z − z∗
(1− z∗)n

)
.

If we write 1− z = ρeiθ, 1− z∗ = ρe−iθ, with ρ ≥ 0, −π ≤ θ < π, i.e. polar coordinates with the
origin at z = 1, |Hn(z)| takes the form:

|Hn| =
ρn−1

sin θ
(ρ sin ((n− 1)θ)− sin(nθ)) .

Therefore, if z = 1 − ρeiθ, Hn is positive semi-definite if and only if each subdeterminant is non
negative, i.e.,

<
(

z

z − z∗
(1− z∗)k

)
=

1
sin θ

(ρ sin ((k − 1)θ)− sin(kθ)) ≥ 0 , k = 2, 3, . . . , n.

We proceed to analize the case z = z∗ ≡ a, which of course is not included in the last condition for
z. The characteristic equation takes the form

r2 − 2(1− a)r + (1− a)2 = 0 ⇒ r = 1− a,

hence,  |Hn| = (1− a)n(α+ βn)
|H1| = 1
|H2| = 1− a2.

Solving for α, β yields
|Hn(a)| = (1− a)n + a(1− a)n−1n

and we can show with elementary algebra that the inequalities |Hk| ≥ 0 k = 1, 2, . . . , n reduce to

−1
n− 1

≤ −1
k − 1

≤ a < 1 , k = 2, 3, . . . , n

⇒ −1
n− 1

≤ a ≤ 1

(The case a = 1 is part of the solution, for |Hn(1)| = 0 ∀ n ≥ 2.)
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