A walk through Determinants and Recurrence Relations

11396. Proposed by Gérard Letac, Université Paul Sabatier, Toulouse, France. For complex z, let $H_{n}(z)$ denote the $n \times n$ Hermitian matrix whose diagonal elements all equal 1 and whose abovediagonal elements all equal z. For $n \geq 2$, find all z such that $H_{n}(z)$ is positive semi-definite.

Solution by Francisco Vial (student), Pontificia Universidad de Chile, Santiago de Chile. We will use Dodgson's rule for determinants to find an explicit formula for $\operatorname{det}\left(H_{n}(z)\right)$:

$$
\begin{gathered}
\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{1 \leq i \leq n \\
1 \leq j \leq n}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{2 \leq i \leq n-1 \\
2 \leq j \leq n-1}}\right]= \\
\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{1 \leq i \leq n-1 \\
1 \leq j \leq n-1}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{2 \leq i \leq n \\
2 \leq j \leq n}}\right]-\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{\begin{subarray}{c}{1 \leq i \leq n-1 \\
2 \leq j \leq n} }}\end{subarray}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{2 \leq i \leq n \\
1 \leq j \leq n-1}}\right] .
\end{gathered}
$$

Here, $\operatorname{det}(M) \equiv|M|$ if M is any $n \times n$ matrix. $H_{n}(z)$ is defined as

$$
H_{n}(z)=\left(\begin{array}{ccccc}
1 & z & z & \ldots & z \\
z^{*} & 1 & z & \ldots & z \\
z^{*} & z^{*} & 1 & \ldots & z \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
z^{*} & z^{*} & z^{*} & \ldots & 1
\end{array}\right)_{n \times n}
$$

and it is easy to see that

$$
\begin{aligned}
& \operatorname{det}\left[\left(h_{i, j}\right)_{\substack{2 \leq i \leq n-1 \\
2 \leq j \leq n-1}}\right]=\left|H_{n-2}\right|, \\
& \operatorname{det}\left[\left(h_{i, j}\right)_{\substack{1 \leq i \leq n-1 \\
1 \leq j \leq n-1}}\right]=\left|H_{n-1}\right|, \\
& \operatorname{det}\left[\left(h_{i, j}\right)_{\substack{2 \leq i \leq n \\
2 \leq j \leq n}}\right]=\left|H_{n-1}\right| .
\end{aligned}
$$

Hence, by Dodgson's rule,

$$
\begin{equation*}
\left|H_{n}\right| \cdot\left|H_{n-2}\right|=\left|H_{n-1}\right|^{2}-\left|A_{n-1}\right|\left|B_{n-1}\right| \tag{1}
\end{equation*}
$$

where

$$
A_{n}(z)=\left(\begin{array}{ccccc}
z & z & z & \ldots & z \\
1 & z & z & \ldots & z \\
z^{*} & 1 & z & \ldots & z \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
z^{*} & z^{*} & z^{*} & \ldots & z
\end{array}\right)_{n \times n} \quad, B_{n}(z)=\left(\begin{array}{ccccc}
z^{*} & 1 & z & \ldots & z \\
z^{*} & z^{*} & 1 & \ldots & z \\
z^{*} & z^{*} & z^{*} & \ldots & z \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
z^{*} & z^{*} & z^{*} & \ldots & z^{*}
\end{array}\right)_{n \times n}
$$

We can compute $\left|A_{n}(z)\right|,\left|B_{n}(z)\right|$ in terms of $\left|H_{n}(z)\right|$ and $\left|H_{n-1}(z)\right|$ as follows:

$$
\begin{aligned}
\operatorname{det}\left(A_{n}\right) & =\left|\begin{array}{ccccc}
z & z & z & \ldots & z \\
1 & z & z & \ldots & z \\
z^{*} & 1 & z & \ldots & z \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
z^{*} & z^{*} & z^{*} & \ldots & z
\end{array}\right|=(-1)^{n-1}\left|\begin{array}{ccccc}
1 & z & z & \ldots & z \\
z^{*} & 1 & z & \ldots & z \\
z^{*} & z^{*} & 1 & \ldots & z \\
\vdots & \vdots & \vdots & & \\
z & z & z & \ldots & z
\end{array}\right| \\
& =(-1)^{n-1}\left(\frac{z}{z^{*}}\right)\left|\begin{array}{ccccc}
1 & z & z & \ldots & z \\
z^{*} & 1 & z & \ldots & z \\
z^{*} & z^{*} & 1 & \ldots & z \\
\vdots & \vdots & \vdots & \\
z^{*} & z^{*} & z^{*} & \ldots & z^{*}
\end{array}\right| \\
& =(-1)^{n-1}\left(\frac{z}{z^{*}}\right)\left(\left(z^{*}-1\right)\left|H_{n-1}\right|+\left|H_{n}\right|\right) .
\end{aligned}
$$

(Note that $(n-1)$ rows have been permuted, then the last row has been multiplied by $\frac{z^{*}}{z}$ and finally the determinant has been computed using Laplace expansion on the last column).

In a similar fashion we have

$$
\operatorname{det}\left(B_{n}\right)=(-1)^{n-1}\left(\frac{z^{*}}{z}\right)\left((z-1)\left|H_{n-1}\right|+\left|H_{n}\right|\right) .
$$

Replacing in (1) we obtain

$$
\begin{aligned}
\left|H_{n}\right| \cdot\left|H_{n-2}\right| & =\left|H_{n-1}\right|^{2}-\left(\left(z^{*}-1\right)\left|H_{n-2}\right|+\left|H_{n-1}\right|\right)\left((z-1)\left|H_{n-2}\right|+\left|H_{n-1}\right|\right) \\
& =\left(2-z-z^{*}\right)\left|H_{n-1}\right|\left|H_{n-2}\right|-(z-1)\left(z^{*}-1\right)\left|H_{n-2}\right|^{2}
\end{aligned}
$$

We now have a linear recurrence relation for $\left|H_{n}\right|$:

$$
\left|H_{n}\right|=\left(2-z-z^{*}\right)\left|H_{n-1}\right|-(z-1)\left(z^{*}-1\right)\left|H_{n-2}\right| .
$$

It is easy to see that the roots of the characteristic equation

$$
r^{2}-\left(2-z-z^{*}\right) r+(z-1)\left(z^{*}-1\right)=0
$$

are

$$
\begin{aligned}
& r_{1}=1-z \\
& r_{2}=1-z^{*}
\end{aligned}
$$

Hence,

$$
\left\{\begin{aligned}
\left|H_{n}\right| & =\alpha r_{1}^{n}+\beta r_{2}^{n} \\
\left|H_{1}\right|= & 1 \\
\left|H_{2}\right|= & 1-z z^{*}
\end{aligned}\right.
$$

Solving for α, β yields

$$
\begin{aligned}
\left|H_{n}\right| & =\frac{z^{*}}{z^{*}-z}(1-z)^{n}+\frac{z}{z-z^{*}}\left(1-z^{*}\right)^{n} \\
\left|H_{n}\right| & =2 \Re\left(\frac{z}{z-z^{*}}\left(1-z^{*}\right)^{n}\right)
\end{aligned}
$$

If we write $1-z=\rho e^{i \theta}, 1-z^{*}=\rho e^{-i \theta}$, with $\rho \geq 0,-\pi \leq \theta<\pi$, i.e. polar coordinates with the origin at $z=1,\left|H_{n}(z)\right|$ takes the form:

$$
\left|H_{n}\right|=\frac{\rho^{n-1}}{\sin \theta}(\rho \sin ((n-1) \theta)-\sin (n \theta))
$$

Therefore, if $z=1-\rho e^{i \theta}, H_{n}$ is positive semi-definite if and only if each subdeterminant is non negative, i.e.,

$$
\Re\left(\frac{z}{z-z^{*}}\left(1-z^{*}\right)^{k}\right)=\frac{1}{\sin \theta}(\rho \sin ((k-1) \theta)-\sin (k \theta)) \geq 0, \quad k=2,3, \ldots, n
$$

We proceed to analize the case $z=z^{*} \equiv a$, which of course is not included in the last condition for z. The characteristic equation takes the form

$$
r^{2}-2(1-a) r+(1-a)^{2}=0 \Rightarrow r=1-a
$$

hence,

$$
\left\{\begin{array}{lcc}
\left|H_{n}\right|= & (1-a)^{n}(\alpha+\beta n) \\
\left|H_{1}\right|= & 1 \\
\left|H_{2}\right|= & 1-a^{2}
\end{array}\right.
$$

Solving for α, β yields

$$
\left|H_{n}(a)\right|=(1-a)^{n}+a(1-a)^{n-1} n
$$

and we can show with elementary algebra that the inequalities $\left|H_{k}\right| \geq 0 \quad k=1,2, \ldots, n$ reduce to

$$
\begin{gathered}
\frac{-1}{n-1} \leq \frac{-1}{k-1} \leq a<1, \quad k=2,3, \ldots, n \\
\Rightarrow \frac{-1}{n-1} \leq a \leq 1
\end{gathered}
$$

(The case $a=1$ is part of the solution, for $\left|H_{n}(1)\right|=0 \forall n \geq 2$.)

