A product.

906. Proposed by Ovidiu Furdui, University of Toledo, Toledo, OH.
(a) Find the value of

$$
\prod_{n=1}^{\infty}\left(\frac{2 m+2 n-1}{2 n-1}\right)\left(\frac{2 n}{2 m+2 n}\right)
$$

where m denotes a positive integer.
(b) More generally, if the real part of z is positive, find the value of

$$
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{(-1)^{n-1}}
$$

Solution by Francisco Vial (student), MT group, Pontificia Universidad Católica de Chile, Santiago, Chile.
(a) Consider the partial products

$$
P_{N}:=\prod_{n=1}^{N}\left(\frac{2 m+2 n-1}{2 n-1}\right)\left(\frac{2 n}{2 m+2 n}\right)
$$

and let $P=\lim P_{N}$ be the product given. For $N>m, P_{N}$ telescopes as follows

$$
\begin{aligned}
\prod_{n=1}^{N}\left(\frac{2 m+2 n-1}{2 n-1}\right)\left(\frac{2 n}{2 m+2 n}\right) & =\prod_{n=1}^{N}\left(\frac{2 m+2 n-1}{2 m+2 n}\right)\left(\frac{2 n}{2 n-1}\right) \\
& =\frac{\prod_{n=1}^{N}\left(1-\frac{1}{2 m+2 n}\right)}{\prod_{n=1}^{N}\left(1-\frac{1}{2 n}\right)} \\
=\frac{\prod_{n=m+1}^{N}\left(1-\frac{1}{2 n}\right)}{\prod_{n=1}^{N}\left(1-\frac{1}{2 n}\right)} & =\frac{\prod_{n=N+1}^{N+m}\left(1-\frac{1}{2 n}\right)}{\prod_{n=1}^{m}\left(1-\frac{1}{2 n}\right)} \\
& =\frac{\prod_{n=1}^{m}\left(1-\frac{1}{2 n+2 N}\right)}{\prod_{n=1}^{m}\left(1-\frac{1}{2 n}\right)}
\end{aligned}
$$

Therefore,

$$
P=\lim _{N \rightarrow \infty} P_{N}=\prod_{n=1}^{m}\left(1-\frac{1}{2 n}\right)^{-1}
$$

since each of the finite terms of the product of the numerator tends to 1 . This allows to conclude

$$
P=\prod_{n=1}^{m}\left(\frac{2 n}{2 n-1}\right)=\frac{(2 m)!!}{(2 m-1)!!}=\frac{m!\sqrt{\pi}}{\Gamma\left(m+\frac{1}{2}\right)}
$$

where $a!$! denotes the double factorial of a.
(b) Write

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{(-1)^{n-1}} & =\prod_{n=1}^{\infty}\left(1+\frac{z}{2 n-1}\right)\left(1+\frac{z}{2 n}\right)^{-1} \\
& =\prod_{n=1}^{\infty}\left(\frac{z+2 n-1}{2 n-1}\right)\left(\frac{2 n}{z+2 n}\right)
\end{aligned}
$$

and the same procedure given above works (or simply take $2 m=z$) and one concludes

$$
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{(-1)^{n-1}}=\frac{\Gamma\left(\frac{z}{2}+1\right) \sqrt{\pi}}{\Gamma\left(\frac{z+1}{2}\right)}
$$

