Pell-Lucas Numbers

907. Proposed by Brian Bradie, Christopher Newport University, Newport News, VA.

For each nonnegative integer n, let

$$
a_{n}=\left(\sum_{j=0}^{n} Q_{j}\right)^{2}-\sum_{j=0}^{n} Q_{2 j+1},
$$

where Q_{n} is the nth Pell-Lucas number, that is, $Q_{0}=2, Q_{1}=2$, and $Q_{n}=2 Q_{n-1}+Q_{n-2}$ for $n \geq 2$. Evaluate

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{n!}
$$

Solution by Francisco Vial (student), Pontificia Universidad Católica de Chile, Santiago, Chile. The answer is $2 \cosh 1$, as we will explain here. The characteristic polynomial of the Pell-Lucas sequence is

$$
r^{n}=2 r^{n-1}+r^{n-2}
$$

where the roots are $r=1 \pm \sqrt{2}$. Given $Q_{0}=Q_{1}=2$, the general term is

$$
Q_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}
$$

Use the geometric series to compute the sum

$$
\begin{aligned}
\sum_{j=0}^{n} Q_{j} & =\sum_{j=0}^{n}(1+\sqrt{2})^{j}+(1-\sqrt{2})^{j}=\sum_{j=0}^{n}(1+\sqrt{2})^{j}+\sum_{j=0}^{n}(1-\sqrt{2})^{j} \\
& =\frac{(1+\sqrt{2})^{n+1}-1}{\sqrt{2}}+\frac{1-(1-\sqrt{2})^{n+1}}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}\left((1+\sqrt{2})^{n+1}-(1-\sqrt{2})^{n+1}\right)
\end{aligned}
$$

Upon squaring this sum,

$$
\begin{aligned}
\left(\sum_{j=0}^{n} Q_{j}\right)^{2} & =\frac{1}{2}\left((1+\sqrt{2})^{2 n+2}-2(1+\sqrt{2})^{n+1}(1-\sqrt{2})^{n+1}+(1-\sqrt{2})^{2 n+2}\right) \\
& =\frac{Q_{2 n+2}}{2}-(-1)^{n+1}=\frac{Q_{2 n+2}}{2}+(-1)^{n}
\end{aligned}
$$

Besides, from the recursive relation,

$$
\begin{aligned}
\frac{Q_{2 n+2}}{2} & =Q_{2 n+1}+\frac{Q_{2 n}}{2}=Q_{2 n+1}+Q_{2 n-1}+\frac{Q_{2 n-2}}{2}=Q_{2 n+1}+Q_{2 n-1}+Q_{2 n-3}+\frac{Q_{2 n-4}}{2}=\ldots \\
& =Q_{2 n+1}+Q_{2 n-1}+\cdots+Q_{1}+\frac{Q_{0}}{2}=\sum_{j=0}^{n} Q_{2 j+1}+\frac{Q_{0}}{2}
\end{aligned}
$$

Hence,

$$
\sum_{j=0}^{n} Q_{2 j+1}=\frac{Q_{2 n+2}}{2}-\frac{Q_{0}}{2}=\frac{Q_{2 n+2}}{2}-1
$$

This calculations give a general term for a_{n}

$$
\begin{aligned}
a_{n} & =\left(\sum_{j=0}^{n} Q_{j}\right)^{2}-\sum_{j=0}^{n} Q_{2 j+1} \\
& =\left(\frac{Q_{2 n+2}}{2}+(-1)^{n}\right)-\left(\frac{Q_{2 n+2}}{2}-1\right) \\
& =(-1)^{n}+1
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{a_{n}}{n!} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}+\sum_{n=0}^{\infty} \frac{1}{n!} \\
& =e^{-1}+e=2 \cosh 1
\end{aligned}
$$

