1217. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.
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where |a] denotes the floor of a and {a} = a — |a] denotes the fractional part of a.

Calculate

Solution by Francisco Vial (student), Pontificia Universidad Catdlica de Chile, Santiago de Chile. The answer
is 777, where -y is the Euler-Mascheroni constant.

Let I be the value of the integral given. For any positive integer k, let Iy = (717, ). We have that if
z € (747, 1), then L € (k, k + 1), therefore |1 ] = k. Write
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We now consider a partial sum I and split it into two parts:
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We analyse the “even” partial sum, of even order (in order to get asymptotics and simplify the computations).
By direct integration,
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hence
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For the first sum we have
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where we have used the factorial property of the Gamma function, and the fact that I'(z + a)/T'(z + b) ~
207 4 0(2%7%1) as |z| — oo (see, for instance, Abramowitz and Stegun: “Handbook of Mathematical
Functions”, pp.257, equation 6.1.47). With this,
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We repeat the argument for the “odd” sum of odd order. As {x} + {—2z} = 1if x € Z, by direct integration

one has
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By the arguments presented earlier,
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and therefore
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Finally,
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as N — oo. For the evaluation of the logarithm, it suffices to know the values of I'(1/2) = /7 and the
recursive relation zI'(z) = I'(z + 1), giving I'(1/2)I'(3/2) = $T(1/2)? = /2.

By the evident convergence of the sequence I (which can be justified by remarking that it converges to the
convergent integral posed, or by means of series comparison criteria), we have that

I= lim Iy= lim Ioy =1—1In—.
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