
1828. Proposed by Stephen J. Herschkorn, Department of Statistics, Rutgers University, New Brunswick, NJ.

Let α0 be the smallest value of α for which exists a positive constant C such that

n∏
k=1

2k
2k − 1

≤ Cnα

for all positive integer n.

a. Find the value of α0.
b. Prove that the sequence {

1
nα0

n∏
k=1

2k
2k − 1

}∞
n=1

is decreasing and find its limit.

Solution by Mark Ashbaugh, University of Missouri, Columbia, and Francisco Vial (student), Pontificia Uni-
versidad Católica de Chile, Santiago de Chile.

a) The inequality given is satisfied if and only if the sequence

un :=
1
nα

n∏
k=1

2k
2k − 1

is bounded. A suficient condition for this is that it converges. We write

un :=
1
nα

n∏
k=1

(2k)(2k)
(2k − 1)(2k)

=
1
nα

22nn!2

(2n)!
,

and Stirling’s aproximation for the factorial states n! = nn
√

2πne−n(1 +O(1/n)) as n approaches∞. Using
this in the latter expression one finds

un ∼
1
nα

22n
(
nn
√

2πne−n)
)2

(2n)2n
√

4πne−2n
=
√
πn1/2−α.

One concludes that if α < 1/2, un is not bounded. On the other hand, if α ≥ 1/2, un is convergent and thus
bounded. Therefore, α0 = 1/2.

b) (First Solution)

We first write the product given in terms of factorials, as before:

n∏
k=1

2k
2k − 1

=
22n(n!)2

(2n)!
,

Taking α0 = 1/2, let us denote the sequence given as

xn :=
1√
n

22n(n!)2

(2n)!
.

A straightforward calculation yields

xn+1

xn
=

√
n(n+ 1)
n+ 1/2

<

√
n(n+ 1) + 1

4

n+ 1/2
= 1,
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which allows to conclude that the sequence is strictly decreasing.

Using Stirling’s formula, as above we have

xn ∼
1√
n

√
πn =

√
π.

as n approaches +∞, therefore, limxn =
√
π.

b) (Second Solution)

Let (xn) be the sequence given (the proof that (xn) is decreasing is as in the first solution). Then

xn =
1√
n

(2n)!!
(2n− 1)!!

=
√
π√
n

2nΓ(n+ 1)
2nΓ(n+ 1/2)

=
√
π√
n

Γ(n+ 1)
Γ(n+ 1/2)

,

We have also that the Gamma function has the property that Γ(x + a)/Γ(x + b) goes as xa−b as x goes to
+∞ for a and b fixed (complex) numbers (see, for example, F. W. J. Olver, Asymptotics and Special Functions,
Academic Press, 1974, pp. 118-119, or G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge
University Press, Cambridge, 1999, pp. 615–616). Thus, Γ(n+ 1)/Γ(n+ 1/2) goes like

√
n as n goes to +∞

and therefore

lim
n→∞

xn =
√
π lim
n→∞

1√
n

Γ(n+ 1)
Γ(n+ 1/2)

=
√
π.

Remark: This exact problem can be seen in Harry Hochstadt’s The Functions of Mathematical Physics (Dover,
1986; originally published by Wiley in 1971), see prob. 15 on page 166 (unfortunately, the problem as stated
has some misprints, but it should read ”Show that if . . . , then

√
nun is an increasing sequence . . .”).

In fact, this has interesting implications for problem 16 (page 167), and this concerns bounds for the Legendre
polynomials, namely

√
sin θ|Pn(cos(θ))| ≤

√
2
πn

, 0 < θ ≤ π, n = 1, 2, 3, ...

An interesting improvement to this bound is to find the largest real number β such that

1√
n+ β

n∏
k=1

2k
2k − 1

is decreasing.

The answer is β = 1/4, and this improves Hochstadt’s result:

√
sin θ|Pn(cos(θ))| ≤

√
2

π(n+ 1/2)
, 0 ≤ θ ≤ π, n = 0, 1, 2, ...

Remark 2: We present yet another way of proving the result. The reader is encouraged to prove the following:

Let z ∈ C. Then

sin(πz)
π

= lim
n→∞

1
n

n∏
k=1

(
1− 1

k
+
z(1− z)
k2

)
.

Taking z = 1/2 yields

1
π

= lim
n→∞

1
n

n∏
k=1

4k2

4k2 − 4k + 1
.
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Noticing 4m2 − 4m+ 1 = (2m− 1)2, and extracting square roots allows to conclude.

For proving the latter representation, one can notice that the polynomial p(x) = x2 − x + r(1 − r) has two
simple roots r and 1− r, whose sum is 1. Then, one can factorize the inner expression, write the product with
Gamma functions, and finally use the reflection formula (or the assymptotics for Γ(z + a)/Γ(z + b) presented
earlier).

Taking other values for r, such as r = −1/2, 3/2..., gives other formulas for π.

Other way to solve this problem is to consider the Wallis product for π:

π

2
=
∞∏
n=1

2n
2n− 1

· 2n
2n+ 1

.

If one considers

un =
1√
n

n∏
k=1

2k
2k − 1

,

then the relation between u2
n and the above partial products for π, is seen by direct comparison.

Remark 3: We write
n∏
k=1

2k − 1
2k

=
22n(n!)2

(2n)!
=

1
4n

(
2n
n

)
,

so we are basically considering here the asymptotics of the “central binomial coeficient”. Consideration of
this is maybe what led de Moivre to Stirling’s formula (de Moivre is really the first to have proved Stirling’s
formula, and he did all the basic work, but he left the constant

√
2π undetermined).

There are other applications as well of studying
(
2n
n

)
in number theory. One is an approach to a (weak version

of) the Chebyshev result for π(n), the counting function for the primes. The other is an approach to Bertrand’s
theorem (for any integer n ≥ 2 there must be a prime between n and 2n). These discussions can be found
in Underwood Dudley, Elementary Number Theory, 2nd ed., Dover, 2008 (see Sect. 21, pp. 163-171 and pp.
177-179).

Remark 4: We present another way to prove the result. This is similar to Remark 2, in the sense that a product
representation for sinπx is required.

Consider the two sequences

pn :=
√
n

n∏
k=1

2k − 1
2k

, qn :=
1√
n

n∏
k=1

2k + 1
2k

.

One can show that this are two convergent sequences. Moreover, let p = lim pn, q = lim qn. We may write

pn =
√
n

n∏
k=1

(
1− x

k

)
, qn =

1√
n

n∏
k=1

(
1 +

x

k

)
,

with x = 1/2. We then have

pnqn =
n∏
k=1

(
1− x2

k2

)
→ sinπx

πx

as n→∞. Also,

pn
qn

= n

n∏
k=1

2k − 1
2k + 1

=
n

2n+ 1
→ 1

2
,
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as n→∞. We then have

pq =
2
π
, p/q =

1
2
.

Multiplying both equations yields p = 1/
√
π, the result desired. Also, q = 2/

√
π.
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