1828. Proposed by Albert F.S. Wong, Temasek Polytechnic, Singapore.

Evaluate

$$
\int_{0}^{1}\left\{\frac{1}{x}\right\}^{2} d x
$$

where $\{\alpha\}=\alpha-\lfloor\alpha\rfloor$ denotes the fractional part of α.
Solution by Francisco Vial (student), Pontificia Universidad Católica de Chile, Santiago de Chile. The answer is $\ln (2 \pi)-1-\gamma$, where γ is the Euler-Mascheroni constant.

Let I be the value of the integral given. For any positive integer k let

$$
I_{k}=\int_{1 /(k+1)}^{1 / k}\left\{\frac{1}{x}\right\}^{2} d x
$$

If $x \in(1 /(k+1), 1 / k)$, then $1 / x \in(k, k+1)$ and therefore $\left\lfloor\frac{1}{x}\right\rfloor=k$. With this consideration,

$$
I_{k}=\int_{1 /(k+1)}^{1 / k}\left(\frac{1}{x}-k\right)^{2} d x=1+\frac{k}{k+1}-2 k \ln \left(\frac{k+1}{k}\right)
$$

by expanding the integrand, followed by direct integration. Now, as $(0,1)=\bigcup_{k \geq 1} I_{k}$, we have that

$$
I=\sum_{k \geq 1} I_{k}=\sum_{k \geq 1}\left(1+\frac{k}{k+1}-2 k \ln \left(\frac{k+1}{k}\right)\right) .
$$

Let $\left(S_{n}\right)$ be the sequence of partial sums. For each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
S_{n-1} & =\sum_{k=1}^{n-1}\left(1+\frac{k}{k+1}\right)-2 \sum_{k=1}^{n-1} k \ln \left(\frac{k+1}{k}\right) \\
& =n-1+\sum_{k=1}^{n-1} \frac{k}{k+1}-2 \sum_{k=1}^{n-1} k \ln \left(\frac{k+1}{k}\right)
\end{aligned}
$$

For the first sum we have

$$
\sum_{k=1}^{n-1} \frac{k}{k+1}=\sum_{k=1}^{n-1}\left(1-\frac{1}{k+1}\right)=n-H_{n}
$$

where H_{n} is the n-th harmonic number. For the second sum we have

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \ln \left(\frac{k+1}{k}\right) & =\sum_{k=1}^{n-1} k \Delta \ln k \\
& =n \ln n-1 \ln 1-\sum_{k=1}^{n-1} \ln (k+1) \Delta k \\
& =n \ln n-\sum_{k=1}^{n-1} \ln (k+1)=\ln \left(n^{n}\right)-\ln n!=\ln \left(\frac{n^{n}}{n!}\right)
\end{aligned}
$$

where Δ is the difference operator (i.e., $\Delta\left(a_{n}\right)=a_{n+1}-a_{n}$), and we have used summation by parts.
Plugging the two results in the expression for S_{n-1} yields

$$
S_{n-1}=2 n-1-H_{n}+2 \ln \left(\frac{n!}{n^{n}}\right)
$$

According to Stirling's formula,

$$
\begin{aligned}
\frac{n!}{n^{n}} & =e^{-n \sqrt{2 \pi n}(1+O(1 / n))} \\
\ln \left(\frac{n!}{n^{n}}\right) & =\ln \left(e^{-n} \sqrt{2 \pi n}(1+O(1 / n))\right) \\
& =-n+\ln \sqrt{2 \pi}+\frac{1}{2} \ln (n)+O(1 / n)
\end{aligned}
$$

Hence,

$$
S_{n-1}=\ln (2 \pi)-1-H_{n}+\ln (n)+O(1 / n) \rightarrow \ln (2 \pi)-1-\gamma
$$

which follows from $\gamma=\lim _{n \rightarrow \infty} H_{n}-\ln (n)$.
Proposed: show that

$$
\int_{0}^{1}\left\{\frac{1}{x^{2}}\right\} d x=-\zeta\left(\frac{1}{2}\right)-1 \approx 0.460354509
$$

In fact, for $k \in \mathbb{N}, k \geq 2$, show that

$$
\int_{0}^{1}\left\{\frac{1}{x^{k}}\right\} d x=-\zeta\left(\frac{1}{k}\right)-\frac{1}{k-1}
$$

Writing $1 / k=z$, with $z \in \mathbb{C}, \Re(z)>0$, prove that

$$
\zeta(z)=\frac{z}{z-1}+\int_{0}^{1}\left\{\frac{1}{x^{1 / z}}\right\} d x
$$

