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Evaluate ∫ 1

0

{
1
x

}2

dx,

where {α} = α− bαc denotes the fractional part of α.

Solution by Francisco Vial (student), Pontificia Universidad Católica de Chile, Santiago de Chile. The answer
is ln(2π)− 1− γ, where γ is the Euler-Mascheroni constant.

Let I be the value of the integral given. For any positive integer k let

Ik =
∫ 1/k

1/(k+1)

{
1
x

}2

dx.

If x ∈ (1/(k + 1), 1/k), then 1/x ∈ (k, k + 1) and therefore b 1
xc = k. With this consideration,

Ik =
∫ 1/k

1/(k+1)

(
1
x
− k
)2

dx = 1 +
k

k + 1
− 2k ln

(
k + 1
k

)
,

by expanding the integrand, followed by direct integration. Now, as (0, 1) =
⋃

k≥1 Ik, we have that

I =
∑
k≥1

Ik =
∑
k≥1

(
1 +

k

k + 1
− 2k ln

(
k + 1
k

))
.

Let (Sn) be the sequence of partial sums. For each n ∈ N we have

Sn−1 =
n−1∑
k=1

(
1 +

k

k + 1

)
− 2

n−1∑
k=1

k ln
(
k + 1
k

)

= n− 1 +
n−1∑
k=1

k

k + 1
− 2

n−1∑
k=1

k ln
(
k + 1
k

)
.

For the first sum we have

n−1∑
k=1

k

k + 1
=

n−1∑
k=1

(
1− 1

k + 1

)
= n−Hn,

where Hn is the n–th harmonic number. For the second sum we have

n−1∑
k=1

k ln
(
k + 1
k

)
=

n−1∑
k=1

k∆ ln k

= n lnn− 1 ln 1−
n−1∑
k=1

ln(k + 1)∆k

= n lnn−
n−1∑
k=1

ln(k + 1) = ln(nn)− lnn! = ln
(
nn

n!

)
,

where ∆ is the difference operator (i.e., ∆(an) = an+1 − an), and we have used summation by parts.

Plugging the two results in the expression for Sn−1 yields

Sn−1 = 2n− 1−Hn + 2 ln
(
n!
nn

)
.
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According to Stirling’s formula,

n!
nn

= e−n
√

2πn (1 +O (1/n))

ln
(
n!
nn

)
= ln

(
e−n
√

2πn (1 +O (1/n))
)

= −n+ ln
√

2π +
1
2

ln(n) +O (1/n) .

Hence,

Sn−1 = ln(2π)− 1−Hn + ln(n) +O(1/n)→ ln(2π)− 1− γ,

which follows from γ = limn→∞Hn − ln(n).

Proposed: show that ∫ 1

0

{
1
x2

}
dx = −ζ

(
1
2

)
− 1 ≈ 0.460354509

In fact, for k ∈ N, k ≥ 2, show that∫ 1

0

{
1
xk

}
dx = −ζ

(
1
k

)
− 1
k − 1

.

Writing 1/k = z, with z ∈ C, <(z) > 0, prove that

ζ(z) =
z

z − 1
+
∫ 1

0

{
1

x1/z

}
dx.
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